
compte-rendu.md 5/5/22, 8:38 PM

1 / 25

1. Compte Rendu INF203
1. Introduction
2. Indications
3. Procedure
4. Difficulties/Problems
5. Code

1. cow_kindergarten
1. Version 1
2. Version 2

2. cow_primaryschool
1. Version 1
2. Version 2

3. cow_highschool
1. Version 1
2. Version 2

4. cow_college
1. Version 1
2. Version 2

5. cow_university
1. Version 1
2. Version 2

6. smart_cow
1. Version 1
2. Version 2

7. crazy_cow
8. affiche_vache
9. newcow

10. newcow-imagination
11. affiche_vache-animated
12. reading_cow
13. automate

Compte Rendu INF203

Introduction

compte-rendu.md 5/5/22, 8:38 PM

2 / 25

On the UE course of INF203 under the general idea of learning the basic commands of
BASH and having an introduction at the C language programming, we are forced to
develop two different projects using BASH (Shell scripting) for the first phase as well as C
for the rest of the phases and following the different programming techniques as well as
skills that we developed during this semester. Below are written the indications that we
needed to follow, the procedure that we followed in order to resolve any problems, as well
as a summary of the problems / difficulties that we met. Our goal through this project is to
explore smart applications of functions in these two essential programming languages
while we are staying focused on the indications given by the project’s paper.On the UE
course of INF203 under the general idea of learning the basic commands of BASH and
having an introduction at the C language programming, we are forced to develop two
different projects using BASH (Shell scripting) for the first phase as well as C for the rest
of the phases and following the different programming techniques as well as skills that we
developed during this semester. Below are written the indications that we needed to
follow, the procedure that we followed in order to resolve any problems, as well as a
summary of the problems / difficulties that we met. Our goal through this project is to
explore smart applications of functions in these two essential programming languages
while we are staying focused on the indications given by the project’s paper.

Indications

Phase 1 (Bash)

By using the cowsay library of Bash (to be installed) we need to propose several scripts
that perform the following actions mentioned below. In the scripts below, the goal is to
use dynamic listing of content, directed to cowsay printing function. We are required to
create seven scripts. More specificallyBy using the cowsay library of Bash (to be installed)
we need to propose several scripts that perform the following actions mentioned below.
In the scripts below, the goal is to use dynamic listing of content, directed to cowsay
printing function. We are required to create seven scripts. More specificall:

1. cow kindergarten
2. cow primaryschool
3. cow highschool
4. cow college
5. cow university
6. smart cow
7. crazy cow

compte-rendu.md 5/5/22, 8:38 PM

3 / 25

cow kindergarten: Pronounces the numbers from 1 to 10.

cow primaryschool: Pronounces the numbers from 1 to a number
that is specified as
argument from the user (ex: ./cow_primaryschool 15).

cow highschool: Pronounces the number from 1 all the suites of number until reaching
the limit x with the condition to pronounce the x^2.

cow college: Pronounces the fibonanchi numbers until a limit set by the user (ex:
./cow_college 8).

cow university: Pronounces the suite of first numbers until a certain limit set by the user
(ex: ./cow_university 6).

smart cow: By adding a mathematical expression (*,+,-,/) with only two terms, the
program does the operation and gives an output like the following:

crazy cow: On the project is mentioned to leave our imagination free and create a script.
We decided to create a feedback program for a website. The cow poses several
questions to the user after he is automatically redirected on the website, saves the
responses (0 to 5) and according to level of satisfaction, it may ask for further feedback.
Last but not least, before it terminates the feedback survey, the program prints a dynamic
message according to user’s overall review

Phase 2 (C)

The general idea was to code the simple functions of the
cowsay project that we used on
the first Phase of this project. This phase is extending even further by implementing the
design of an Automate in the workflow of small video game with the cow where the user

compte-rendu.md 5/5/22, 8:38 PM

4 / 25

needs to feed it according to cow's health. Before that, there are several tasks that need
to be performed. More specifically:

1. Create a function that will print the cow onto the
terminal
2. Add some more functionality on the cow by giving the ability to have modifiable

eyes. In that case several tests need to be done.
3. Let our imagination to make something intresting. We
decided to take inspiration

from some ASCII art examples. So we designed a program which take as argument
a number between 1 and 9 and then it counts down starting from the given time.
Every second appears on the screen to corresponding second on the
cown-down
time with an ASCII representation. When the time is up, our cow appears that says
"Coucou! Hello world!".

4. The idea to create an animated cow by using the given
functions void update() and
gotoxy(x,y).

5. The program needs to read from a file its content (the file's name is given as an
aurgument) and the cow needs to print caracter par caracter the corresponding
caracter on its mouth and then save it on the text's bubble above the cow.

Procedure

As team, we decided to work to the corresponding workflow below:

Organization, transparency and communication are our standards for a good team
work.
According to the mantra mentioned above, we used the softwares mentioned
below:

1. GitHub: Includes our private repository with all the code that has been
submitted by the team members. It tracks the live versions that every team
member is watching every time on his personal desktop workstation. Also,
GitHub provides a great way to visualize any changes and to restore previous
versions of the code.

2. VSCode: Instead of the direct terminal idle, we decided to work on VSCode
since it is a universal development app, with some great extensions to integrate
onto the workflow and to visualize better the different commands. In addition to
that, it offers a direct connection to our GitHub repository.

3. W3Schools: Used for classes documentation that we integrated for part c on
our separate version (explanation at paragraph Difficulties/Project – section 11).

compte-rendu.md 5/5/22, 8:38 PM

5 / 25

From the first view of the project, we knew that
the phase C would be the most
complicated one and there was a possibility that we couldn’t be able to make it so
far. So, our goal was set to complete as better as possible the rest of the tasks.
For every step on the different two phases
mentioned above, we decided to follow
the “exams technique”. This means, that we will follow the exact steps by including
the required elements mentioned on the specific task (function, returned value,
required arguments, etc.) as part of project’s understanding. The rest of the code will
get completed according to the personal point of view through the understanding
process of the task. This will allow us to have the biggest understanding that is
possible, for this demanding project.
The phase 1 as proposed needs to be completed before the final course of Bash
(week before the vacations). We finalized the code for this phase after our return
from the vacation.

There was a merge of programs between the members that came and
collaborated together. So, on our code section are included in several parts two
versions of the code. The second version was produced with the mergion of the
different programs from the team members and it is the most optimised.

This means that the whenever exist version 2 of a program, is the version that
we were keeping updated and it's the one that we propose as program for the
coresponding exercise.

Difficulties/Problems

In this section we are presenting the different challenges that we met and the workflows
around them in order to be solved:

1. The first difficulty that we needed to solve was how the smart cow program will
understand the expression that it needs to perform. To solve this issue we divided
the cases that we will do with a filtration with the cut command. Firstly, we save the
operator in a variable
and then we compare the operator’s variable with the four
math expressions.

2. Something that is interested is that during our TPs when we needed to do a
multiplication we couldn’t do that by using

$(expr 5 * 4)

compte-rendu.md 5/5/22, 8:38 PM

6 / 25

for instance. In order to go around this issue, for all the multiplications required to
the phase 1, we used this syntax

$((5 * 4))

3. When we had to test if a number was Premier on the cow_university exercise, we
firstly introduced another function that would check this option but in the end we
ended on integrating the code to the whole program instead.

4. On the smart_cow the multiplication function do not work always. There are times
that it works and other times that it doesn't work. The systex of the given expression
argument must be of type "3 + 10" for instance and not "3+10" or 3+10.

5. Another challenge was the appearance of the cow on the terminal screen (phrase 2).
The given ASCII code was a great start but we had to do some modifications with
the special caracters that are accepted on the printf command, as well as the fact
that we needed to represent it in an one-line printing message by taking into
consideration the spaces that were required.

6. In order to change the eyes caracters we had to pass though several tests. The first
one was to check if the first parameter was the correct phrase that would activate
the mechanism that will change the eye's characters. Since the argument is parsed
via a pointer and we need to compare it with a string, after further examination, we
decided to use an strcmpr. Then we are using a safe mechnism that checks if the
argument that was parsed for the eye's caracters are specifically 2 caracters only.
Last but not least, we modified the affiche_vache function so that it can receive the
new caracters for the eyes.

7. In the imagination project, one challenge that we came
across was the fact that we
had to use a pointer to access the variabe that has stored the elements that we are
comparing the inputed argument for the "-count" scenario, so that we can decode
and receive an int that can be used in the for that we have created so that we can
do the countdown. In teh enddd we decided to parse a seperate scanf to receive
the user's input.

8. We coudn't understand how to use the gotoxy functions to
animate the cow, so we
created a sequence of differantiated appearance states of the cow and we added in
order so that we can create the illusion that the cow opens and closes the eyes.

compte-rendu.md 5/5/22, 8:38 PM

7 / 25

9. In different sections on the probelms/scenarios mentioned above, we found that we
need to cler the screen and have full control of what we are printing on it. This is
how the clear_screen function came to love:

void clearScreen()

{

 const char *CLEAR_SCREEN_ANSI = "\e[1;1H\e[2J";
 write(STDOUT_FILENO, CLEAR_SCREEN_ANSI, 12);

}

10. We have observed that when we arew using this function, always on the upper left
corner there is a constant caracter that is presented that maybe comes from the
cached memory since it is not related to the code at all.

11. In order to make the cow to stock the said
characters from the file we came in with
the idea to create a list that is initially vide and to concantinate every character that is
from our fscanf to this list (table actually). Then we are combining every character in
order to create the whole string that replace the message on the text's bubble.

12. Designing the automate was one of the most challenging parts
not because of its
difficulty, but because we couldn't understand the connection between the different
variables and what we will have as an output of every state's change. After having
started by designing the automate with basic states the number of available
stockage, this lead us to a huge list of subcategories and exceptions, but at the
same time we understood what was expected to do on the same place. This is how
we understood the video game's logic and we arrived on the following automate:

compte-rendu.md 5/5/22, 8:38 PM

8 / 25

13. We need to mention that the operation that creates random numbers needed some
further research so we findexactly how it selects the random numbers. So we
arrived at the following form:

rand()%(end+1-start)+start;

14. On our automate's program we used a hybrid model
of the systax. Instead of using
a pointer to change the local variable that we initialised like the fitness and stock
variables, we are redefining them with a call to the respective functions and by
saving the result of the variable with the same name. We could definitely write it with
pointers but it was more visible to us for how we are going to treat the different
cases and for how to find out when there is a game over or an end of the game to a
parameter.

Code

cow_kindergarten

Version 1

numbers="1 2 3 4 5 6 7 8 9 10"

var=""

clear

for var in $numbers

do

 cowsay $var

 sleep 1

 clear

done

Version 2

#!/bin/bash

i=10

while [$i -ne 1]

do

 cowsay $i

 ((i--))

 sleep 1

compte-rendu.md 5/5/22, 8:38 PM

9 / 25

 clear

done

cowsay -T \U 1

cow_primaryschool

Version 1

#!/bin/sh

a=1

clear

while [$a -le $1]

do

 cowsay $a

 sleep 1

 clear

 a=`expr $a + 1`

done

Version 2

#!/bin/bash

i=$1

while [$i -ne 1]

do

 cowsay $i

 ((i--))

 sleep 1

 clear

done

cowsay -T \U 1

cow_highschool

Version 1

#!/bin/sh

a=1

clear

while [$a -le $1]

compte-rendu.md 5/5/22, 8:38 PM

10 / 25

do

 lamda=$(($a * $a))

 cowsay $lamda

 sleep 1

 clear

 a=`expr $a + 1`

done

Version 2

#!/bin/bash

i=$1

while [$i -ne 1]

do

 n=$(($i * $i))

 cowsay $n

 ((i--))

done

cowsay -T \U 1

cow_college

Version 1

clear

n1=0

n2=1

if [$1 -lt 0]

then

 cowsay "incorrect input"
 sleep 3

 clear

elif [$1 -eq 1 -o $1 -eq 2]

then

 cowsay $n2
 sleep 1

 clear

elif [$1 -eq 0]

then

 echo Fibonnaci number is 0

 sleep 3

 clear

else

 nht=$(($n1 + $n2))

 cowsay $nht

 sleep 1

 clear

 while [$nht -lt $1]

compte-rendu.md 5/5/22, 8:38 PM

11 / 25

 do

 n1=$n2
 n2=$nht

 nht=$(($n1 + $n2))
 cowsay $nht

 sleep 1

 clear

 done

fi

Version 2

#!/bin/bash

n=$1

a=0

b=1

for ((i=0; i<n; i++))
do

 fn=$(($a + $b))

 a=$b

 b=$fn

 cowsay $fn

done

 fn=$(($a + $b))

 a=$b

 b=$fn

 cowsay -T \U $fn

cow_university

Version 1

#!/bin/bash

n=$1

for ((i=2;i<n; i++))

do

 mod=$(expr $n%$i)
 if [$mod -ne 0]
 then

 cowsay $i

 fi

done

Version 2

compte-rendu.md 5/5/22, 8:38 PM

12 / 25

#!/bin/sh

if [$1 -gt 0]

then

 num=$1

 for i in $1

 do

 limnos=2

 karpa=$(($num % $i))

 while [$limnos < $num -a $karpa -ne 0]

 do

 limnos=$(($limnos + 1))

 karpa=$(($1 % $limnos))

 done

 if [$limnos -eq $num]

 then

 lamda=0

 else

 lamda=1

 fi

 if [$lamda -eq 0]

 then

 cowsay $num

 fi

 num=$num-1

 done

else

 echo We need a positive number

 echo Operation terminated

fi

smart_cow

Version 1

#!/bin/bash

a=$1

b=$2

mtp=$(expr $a * $b)

cowsay -e $mtp $a*$b

Version 2

#!/bin/bash

kappa=$(echo $1 | cut -d" " -f 2)

compte-rendu.md 5/5/22, 8:38 PM

13 / 25

if ["$kappa" == "+"]

then

 echo +

 n1=$(echo $1 | cut -d+ -f 1)

 n2=$(echo $1 | cut -d+ -f 2)

 lamda=$(expr $n1 + $n2)

 cowsay -e $lamda $1

elif ["$kappa" == "-"]

then

 echo -

 n1=$(echo $1 | cut -d- -f 1)

 n2=$(echo $1 | cut -d- -f 2)

 lamda=$(expr $n1 - $n2)

 cowsay -e $lamda $1

elif ["$kappa" == "/"]

then

 echo /

 n1=$(echo $1 | cut -d/ -f 1)

 n2=$(echo $1 | cut -d/ -f 2)

 lamda=$(expr $n1 / $n2)

 cowsay -e $lamda $1

else

 n1=$(echo $1 | cut -d" " -f 1)

 n2=$(echo $1 | cut -d" " -f 3)

 echo $n1

 echo $n2

 lamda=$(expr $a * $b)

 cowsay -e $lamda $1

fi

crazy_cow

#!/bin/bash

clear

echo Before we start, which is your name ?
read name

clear

echo Welcome to the online feedback portal by Lekitable $name !
sleep 1
cowsay "I am Marlyn, your personal assistant"

sleep 2
clear

echo Welcome to the online feedback portal by Lekitable $name !
cowsay "We will start from our latest website version feedback"
sleep 3
echo Welcome to the online feedback portal by Lekitable $name !
clear

cowsay "Whenever you are ready to start, reply below"

echo "Yes or No ?"

read response

if ["$response" == "Yes"]

compte-rendu.md 5/5/22, 8:38 PM

14 / 25

then

 cowsay Let\'s begin $name

 count=0

 total=34

 pstr="
[===]"

 while [$count -lt $total];

 do

 sleep 0.25 # this is work

 count=$(($count + 1))

 pd=$(($count * 73 / $total))

 printf "\r%3d.%1d%% %.${pd}s" $(($count * 100 / $total)) $((($count *
1000 / $total) % 10)) $pstr
 done

 clear

 cowsay Great!

 sleep 2

 seconds=4

 clear
 while [$seconds -ne 0]

 do

 seconds=$(($seconds - 1))

 cowsay "You will get redirected onto the website https://lekitable.fr in
$seconds"

 sleep 1

 clear

 count=0

 total=20

 pstr="
[===]"

 done

 while [$count -lt $total];

 do

 sleep 0.1 # this is work
 count=$(($count + 1))

 pd=$(($count * 73 / $total))

 printf "\r%3d.%1d%% %.${pd}s" $(($count * 100 / $total)) $((($count *
1000 / $total) % 10)) $pstr
 done

 open https://lekitable.fr

 cowsay Expore the website and come back later when you are ready to share
your point of view

 echo "When you are ready just click \"Enter\""

 read kati

 count=0

 total=15

 pstr="
[===]"

 while [$count -lt $total];

 do

compte-rendu.md 5/5/22, 8:38 PM

15 / 25

 sleep 0.1 # this is work
 count=$(($count + 1))

 pd=$(($count * 73 / $total))

 printf "\r%3d.%1d%% %.${pd}s" $(($count * 100 / $total)) $((($count *
1000 / $total) % 10)) $pstr
 done

 echo Success!

 sleep 1

 clear

 #Question 1

 cowsay Question no 1

 sleep 2

 cowsay "How would you rate your experience?"

 echo "Please reply with a number from 1 (not good) to 5 (very good)"
 read exp1

 if [$exp1 -lt 3]

 then

 clear

 cowsay "We are sad to hear that. Whould you like to specify why you
rated us with $exp1 for your overal experience on the site?"

 echo Reply with YES or No

 read rep1

 if [$rep1 == "YES"]

 then

 clear

 cowsay "Please specify below..."

 read resp1

 fi

 fi

 sleep 1

 clear

 #Question 2

 cowsay Question no 2

 sleep 2

 cowsay "How likely are you to recommend our website to a friend?"

 echo "Please reply with a number from 1 (not good) to 5 (very good)"
 read exp2

 if [$exp2 -le 2]

 then

 clear

 cowsay "Hmm It seems that you wouldn't recomend this site to a friend.
Why is that?"

 echo "Please specify below..."

 read resp1
 else

 clear

 cowsay "Thank you for your score. Is there anything missing on this
page?"

 echo Reply with YES or No

 read rep2

 if [$rep2 == "YES"]

 then

 clear

compte-rendu.md 5/5/22, 8:38 PM

16 / 25

 cowsay "Please specify below..."

 read resp2

 fi

 fi

 clear
 cowsay "Thank you very much for your time $name! Have a nice day."

else

 echo "Ok, bye!"

fi

affiche_vache

#include <stdio.h>

void affiche_vache(){
 printf("\\ ^__^\n \\ (00)_______\n (__)\\)\\/\\\n ||--
--w |\n || ||\n");
}

newcow

#include <stdio.h>

#include <string.h>

void affiche_vache(){
 printf("\\ ^__^\n \\ (00)_______\n (__)\\)\\/\\\n ||--
--w |\n || ||\n");
}

int main(int argc, char *argv[]){

 int k;

 k = argc;

 if (k-1 == 2) {

 if (!strcmp(argv[1],"-e")){
 int i,totChar;

 totChar = 0;

 for(i=0; argv[2][i] != '\0'; i++){

 totChar++;

 }

 if (totChar==2){
 printf("\\ ^__^\n \\ (%s)_______\n (__)\\
)\\/\\\n ||----w |\n || ||\n",argv[2]);

 }

 else {

 affiche_vache();

 }

 }

compte-rendu.md 5/5/22, 8:38 PM

17 / 25

 else {
 printf("No argument given for the eyes\n");

 }

 }

 else {

 affiche_vache();

 }

}

newcow-imagination

To access the imagination action, please use the argument -count and then you will be
asked for a number. Follow th einstructions on screen. On the program is also integrated
the option for the eyes argument.

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <unistd.h>

void affiche_vache_simple(){
 printf(" ^__^\n (00)_______\n (__)\\)\\/\\\n ||----
w |\n || ||\n");

}

void affiche_vache_eyes(char text[]){

 printf(" ^__^\n (%s)_______\n (__)\\)\\/\\\n ||----
w |\n || ||\n", text);

}

void affiche_vache(char text[]){

 printf("< %s >\n\\ ^__^\n \\ (00)_______\n (__)\\)\\/\\\n
||----w |\n || ||\n", text);

}

void clearScreen()

{

 const char *CLEAR_SCREEN_ANSI = "\e[1;1H\e[2J";
 write(STDOUT_FILENO, CLEAR_SCREEN_ANSI, 12);

}

void one(int o){

 if (o==1){
 printf("1111\n 11\n 11\n 11\n111111\n");

 }

 else if (o==2) {

 printf(" 2222 \n22 22\n 22 \n 22 \n222222\n");

 }

 else if (o==3) {

 printf(" 3333 \n33 33\n 333\n33 33\n 3333 \n");

 }

 else if (o==4) {

compte-rendu.md 5/5/22, 8:38 PM

18 / 25

 printf("44 44\n44 44\n444444\n 44\n 44\n");

 }

 else if (o==5) {

 printf("555555\n55 \n55555 \n 55\n55555 \n");

 }

 else if (o==6) {

 printf(" 6666 \n66 \n66666\n66 66\n 6666 \n");

 }

 else if (o==7) {

 printf("777777\n 77 \n 77 \n 77 \n77 \n");

 }

 else if (o==8) {

 printf(" 8888 \n88 88\n 8888 \n88 88\n 8888 \n");

 }

 else if (o==9) {

 printf(" 9999 \n99 99\n 99999\n 99\n 9999 \n");

 }

 else if (o==0) {

 printf(" 0000 \n00 00\n00 00\n00 00\n 0000 \n");

 }

}

int main(int argc, char *argv[]){

 char code[19]="0 1 2 3 4 5 6 7 8 9";

 int i,k,j;
 k = argc;

 if (k-1 == 2) {

 if (!strcmp(argv[1],"-e")){

 int i,totChar;

 totChar = 0;

 for(i=0; argv[2][i] != '\0'; i++){

 totChar++;

 }

 if (totChar==2){
 affiche_vache_eyes(argv[2]);

 }

 else {

 affiche_vache_simple();

 }

 }

 }

 else {

 if (!strcmp(argv[1],"-count")) {

 printf("Donner un nombre entre 0 et 9\n");

 scanf("%d", &k);
 clearScreen();

 for (j=k; j>=0;) {

 one(j);

 sleep(1);

 clearScreen();

 j--;

 }

 affiche_vache("Coucou! Hello world");
 }

 else {
 affiche_vache(argv[1]);
 }

compte-rendu.md 5/5/22, 8:38 PM

19 / 25

 }

}

affiche_vache-animated

After the program is compilled, it requires a number as argument during execution.

#include <stdio.h>

#include <string.h>

#include <unistd.h>

#include <stdio.h>

void update () { printf ("\033[H\033[J");}
void gotoxy (x ,y) { printf (" \033[%d;%dH",x , y) ;}

void affiche_vache(int i){

 gotoxy(i+1,i+15);
 printf("\\ ^__ ^\n");

 gotoxy(i+1,i+15);
 printf("\\ (00) \\ _______ \n");

 gotoxy(i+2,i+15);
 printf(" (__) \\) \\/\\\n");

 gotoxy(i+3,i+15);
 printf(" || - - - -w |\n");

 gotoxy(i+4,i+15);
 printf(" || ||\n");

}

void affiche_fruit(int i){

 gotoxy(i,i);

 printf(" ,--./,-.\n");

 gotoxy(i+1,i);

 printf("/ # \\\n");
 gotoxy(i+2,i);

 printf("| |\n");

 gotoxy(i+3,i);

 printf("\\ / \n");

 gotoxy(i+4,i);

 printf(" `._,._,'\n");

 }

 void affiche_fruit_manger(int i){

 gotoxy(i,i);

 printf(" ,--./,-.\n");

 gotoxy(i+1,i);

 printf("/,-._.--~\\\n");

 gotoxy(i+2,i);

 printf(" __} {\n");
 gotoxy(i+3,i);

 printf("\\`-._,-`-,\n");

 gotoxy(i+4,i);

 printf("`._,._,'\n");

 }

compte-rendu.md 5/5/22, 8:38 PM

20 / 25

void cow(char *arg_e, char *arg_T, char *espace){
 printf("%s^__^ \n\

%s(%s)\\ _______ \n\

%s(__)\\)\\/\\\n\

%s %s ||------w |\n\
%s || ||\n",espace, espace, arg_e, espace, espace, arg_T, espace);

}

void cow2(char *arg_e, char *arg_T, char *espace){

 printf("%s^__^ \n\

%s(%s)\\ _______ \n\

%s(__)\\)\\/\\\n\

%s %s /|------w |\n\
%s \\| \\|\n",espace, espace, arg_e, espace, espace, arg_T,
espace);

}

void cow3(char *arg_e, char *arg_T, char *espace){

 printf("%s^__^ \n\

%s(%s)\\ _______ \n\

%s()\\)\\/\\\n\

%s U ||------w |\n\

%s %s || ||\n",espace, espace, arg_e, espace, espace, arg_T, espace);

}

int main(int argc, char *argv[]){

 int coord;

 sscanf(argv[1], "%d", &coord);

 long pos_e = -1;

 long pos_T = -1;

 char eye[10] = "oo";

 char eye2[10] ="00";

 char tongue[200] = " ";

 for (int i = 1; i < argc; i++){
 if (strcmp(argv[i],"-e") == 0){

 pos_e = i + 1;

 strcpy(eye, argv[pos_e]);

 }

 else if (strcmp(argv[i], "-T") == 0){

 pos_T = i + 1;

 strcpy(tongue, argv[pos_T]);

 }

 }

 char espace[20000] = "
";

 for (int k = 0; k <= 2; k++){

 if (k == 0){

 update();

 affiche_fruit(coord);

 sleep(1);

 cow(eye, tongue, espace);

 sleep(1);

compte-rendu.md 5/5/22, 8:38 PM

21 / 25

 update();

 affiche_fruit(coord);

 cow2(eye2, tongue, espace);
 sleep(1);}

 else if(k==2){

 update();
 affiche_fruit(coord);

 cow3(eye2, tongue, espace);

 sleep(2);
 update();
 affiche_fruit_manger(coord);

 cow(eye2, tongue, espace);

 sleep(2);
 update();
 affiche_fruit_manger(coord);

 cow(eye, tongue, espace);

 }

 else{

 update();
 affiche_fruit(coord);

 cow(eye2, tongue, espace);

 sleep(1);
 update();
 affiche_fruit(coord);

 cow2(eye2, tongue, espace);

 sleep(1);
 update();
 affiche_fruit(coord);

 cow(eye2, tongue, espace);

 sleep(2);
 }

 for (int j = 0; j < strlen(espace); j++)

 strcpy(&espace[j], &espace[j+1]);

 }

}

NOTE: The terminal may give this error "illegal hardware instruction" to MacOS
computers due to an architecture uncompability since MacOS uses its own built C library
while Ubunutu and Windows computers take the ressources from the C Foundation.

reading_cow

You can use the fichier.auto that is included with the project's zip file.

#include <stdio.h>

#include <string.h>

#include <unistd.h>

void affiche_vache(char text[]){

 printf("< %s >\n\\ ^__^\n \\ (00)_______\n (__)\\)\\/\\\n
||----w |\n || ||\n", text);

compte-rendu.md 5/5/22, 8:38 PM

22 / 25

}

void affiche_vache_bouche(char text2[], char text){

 printf("< %s >\n\\ ^__^\n \\ (00)_______\n (__)\\)\\/\\\n
%c ||----w |\n || ||\n", text2, text);
}

void clearScreen()

{

 const char *CLEAR_SCREEN_ANSI = "\e[1;1H\e[2J";
 write(STDOUT_FILENO, CLEAR_SCREEN_ANSI, 12);

}

int main(int argc, char *argv[]){

 FILE *f;

 char c;

 char tab[256];

 f = fopen(argv[1], "r"); if (f == NULL) {

 perror(argv[1]);

 }

 int j=0;

 fscanf(f, "%c", &c);

 while (!feof(f)) {

 tab[j]=c;

 j++;

 fscanf(f, "%c", &c);

 }

 int i;

 char tab2[256];

 for (i=0; tab[i]!='\0';i++){

 affiche_vache_bouche(tab2, tab[i]);

 sleep(1);

 clearScreen();

 tab2[i]=tab[i];

 affiche_vache(tab2);
 sleep(1);

 clearScreen();

 }

 affiche_vache(tab2);

 printf("\n");

 return 0;

}

automate

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include <unistd.h>

#include<time.h>

compte-rendu.md 5/5/22, 8:38 PM

23 / 25

#define LIFEROCKS 2

#define LIFESUCKS 1

#define BYEBYELIFE 0

void clearScreen()

{

 const char *CLEAR_SCREEN_ANSI = "\e[1;1H\e[2J";
 write(STDOUT_FILENO, CLEAR_SCREEN_ANSI, 12);

}

void affiche_vache(int i){

 //pour byebyelife
 if (i==0) {

 printf("< En train de byebyelife >\n\\ ^__^\n \\ (XX)_______\n
(__)\\)\\/\\\n ||----w |\n || ||\n");

 }

 //pour liferocks

 else if (i==2) {

 printf("< Yeah! Liferocks >\n\\ ^__^\n \\ (00)_______\n (__)\\
)\\/\\\n ||----w |\n || ||\n");

 }

 //pour lifesucks

 else if (i==1) {

 printf("< Oopss, lifesucks :(>\n\\ ^__^\n \\ (--)_______\n
(__)\\)\\/\\\n ||----w |\n || ||\n");

 }

 else if (i==-1) {
 printf("Game over");
 }

}

int stock_update (int stock, int lunchfood, int crop) {

 if (lunchfood <= stock) {

 return (stock-lunchfood+crop);

 }

 else {

 return -1;

 }

}

int fitness_update(int fitness, int lunchfood, int digestion) {
 return (lunchfood+fitness+digestion);

}

int sortie(int etatcourant, int fitness, int lunchfood, int digestion) {

 switch (etatcourant) {

 case LIFEROCKS:

 if (0<=fitness_update(fitness, lunchfood, digestion) &&
fitness_update(fitness, lunchfood, digestion)<=10){

 if (fitness_update(fitness, lunchfood, digestion)==0 ||
fitness_update(fitness, lunchfood, digestion)==10) {

 return BYEBYELIFE;

 }

 else if (1<=fitness_update(fitness, lunchfood, digestion) &&
fitness_update(fitness, lunchfood, digestion)<=3) {

 return LIFESUCKS;

 }

 else if (7<=fitness_update(fitness, lunchfood, digestion) &&
fitness_update(fitness, lunchfood, digestion)<=9) {

compte-rendu.md 5/5/22, 8:38 PM

24 / 25

 return LIFESUCKS;

 }

 else {

 return LIFEROCKS;

 }

 }

 else {
 return -1;

 }

 case BYEBYELIFE:

 if (0<=fitness_update(fitness, lunchfood, digestion) &&
fitness_update(fitness, lunchfood, digestion)<=10){

 if (1<=fitness_update(fitness, lunchfood, digestion) &&
fitness_update(fitness, lunchfood, digestion)<=3) {

 return LIFESUCKS;

 }

 else if (7<=fitness_update(fitness, lunchfood, digestion) &&
fitness_update(fitness, lunchfood, digestion)<=9) {

 return LIFESUCKS;

 }

 else if (4<=fitness_update(fitness, lunchfood, digestion) &&
fitness_update(fitness, lunchfood, digestion)<=6) {

 return LIFEROCKS;

 }

 else BYEBYELIFE;
 }

 else {
 return -1;

 }

 case LIFESUCKS:

 if (0<=fitness_update(fitness, lunchfood, digestion) &&
fitness_update(fitness, lunchfood, digestion)<=10){

 if (fitness_update(fitness, lunchfood, digestion)==0 ||
fitness_update(fitness, lunchfood, digestion)==10) {

 return BYEBYELIFE;

 }

 else if (4<=fitness_update(fitness, lunchfood, digestion) &&
fitness_update(fitness, lunchfood, digestion)<=6) {

 return LIFEROCKS;

 }

 else LIFESUCKS;

 }

 else {
 return -1;

 }

 }

 return -1;
}

int main(){

 int stock=5;

 int fitness=5;

 int etatcourant=LIFEROCKS;

 int start=-3;

 int end=3;
 int start_2=-3;

 int end_2=0;

 int digestion;

 int crop;

compte-rendu.md 5/5/22, 8:38 PM

25 / 25

 int lunchfood;

 int duree_de_vie=0;

 clearScreen();

 affiche_vache(etatcourant);

 while (stock>=0 && stock<=10) {
 printf("Stock: %d\n", stock);

 printf("De combien voulez-vous alimenter la vache? (valeur entre 0
et %d)\n",stock);

 scanf("%d", &lunchfood);

 digestion = rand()%(end_2+1-start_2)+start_2;

 crop = rand()%(end+1-start)+start;

 etatcourant=sortie(etatcourant,fitness, lunchfood, digestion);
 affiche_vache(etatcourant);
 if (etatcourant==0){
 printf("La vache est mort :(\n");

 break;

 }

 else if (etatcourant==-1){

 printf("Game over. Le niveau de fitness n'est pas entre les
limites definis\n");

 break;

 }

 fitness=fitness_update(fitness,lunchfood,digestion);

 stock=stock_update(stock,lunchfood,crop);
 if (stock<=0){

 printf("Le stock est vide.\n");

 break;

 }

 else if (stock>=10) {

 stock=10;
 }

 duree_de_vie++;

 }

 printf("La vache etait en vie pour %d jours\n", duree_de_vie);

}

Copyright 2022 | All right reserved - Vasileios Skarleas, Nada Yassine, Bernice Toko
Kamga

	Compte Rendu INF203
	Introduction
	Indications
	Procedure
	Difficulties/Problems
	Code
	cow_kindergarten
	Version 1
	Version 2

	cow_primaryschool
	Version 1
	Version 2

	cow_highschool
	Version 1
	Version 2

	cow_college
	Version 1
	Version 2

	cow_university
	Version 1
	Version 2

	smart_cow
	Version 1
	Version 2

	crazy_cow
	affiche_vache
	newcow
	newcow-imagination
	affiche_vache-animated
	reading_cow
	automate

